Transition-states in protein folding kinetics: the structural interpretation of Phi values.

نویسندگان

  • Thomas R Weikl
  • Ken A Dill
چکیده

Phi values are experimental measures of the effects of mutations on the folding kinetics of a protein. A central question is what structural information Phi values give about the transition-state of folding. Traditionally, a Phi value is interpreted as representing the "nativeness" of a mutated residue in the transition-state. However, this interpretation is often problematic. We present here a better structural interpretation of Phi values for mutations within a given helix. Our interpretation is based on a simple physical model that distinguishes between secondary and tertiary free energy contributions of helical residues. From a linear fit of the model to experimental data, we obtain two structural parameters: the extent of helix formation in the transition-state, and the nativeness of tertiary interactions in the transition-state. We apply the model to all proteins with well-characterized helices for which more than 10 Phi values are available: protein A, CI2, and protein L. The model is simple to apply to experimental data, captures nonclassical Phi values <0 or >1 in these helices, and explains how different mutations at a given site can lead to different Phi values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phi values in protein-folding kinetics have energetic and structural components.

Phi values are experimental measures of how the kinetics of protein folding is changed by single-site mutations. Phi values measure energetic quantities, but they are often interpreted in terms of the structures of the transition-state ensemble. Here, we describe a simple analytical model of the folding kinetics in terms of the formation of protein substructures. The model shows that Phi values...

متن کامل

Phi-value analysis of a three-state protein folding pathway by NMR relaxation dispersion spectroscopy.

Experimental studies of protein folding frequently are consistent with two-state folding kinetics. However, recent NMR relaxation dispersion studies of several fast-folding mutants of the Fyn Src homology 3 (SH3) domain have established that folding proceeds through a low-populated on-pathway intermediate, which could not be detected with stopped-flow experiments. The dispersion experiments pro...

متن کامل

Transition-States in Protein Folding Kinetics: The Structural Interpretation of Φ values

0022-2836/$ see front matter © 2006 E Φ values are experimental measures of the effects of mutations on the folding kinetics of a protein. A central question is what structural information Φ values give about the transition-state of folding. Traditionally, a Φ value is interpreted as representing the ‘nativeness’ of a mutated residue in the transition-state. However, this interpretation is ofte...

متن کامل

Transition states in protein folding kinetics: modeling phi-values of small beta-sheet proteins.

Small single-domain proteins often exhibit only a single free-energy barrier, or transition state, between the denatured and the native state. The folding kinetics of these proteins is usually explored via mutational analysis. A central question is which structural information on the transition state can be derived from the mutational data. In this article, we model and structurally interpret m...

متن کامل

Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics: Folding Rates and Phi-Values

This paper presents a new method for studying protein folding kinetics. It uses the recently introduced Stochastic Roadmap Simulation (SRS) method to estimate the transition state ensemble (TSE) and predict the rates and the Phi-values for protein folding. The new method was tested on 16 proteins, whose rates and Phi-values have been determined experimentally. Comparison with experimental data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 365 5  شماره 

صفحات  -

تاریخ انتشار 2007